- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Bruno, Simone (1)
-
Campos, Felipe_A (1)
-
Del_Vecchio, Domitilla (1)
-
Fu, Yi (1)
-
Williams, Ruth_J (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Continuous time Markov chains are commonly used as models for the stochastic behavior of chemical reaction networks. More precisely, these Stochastic Chemical Reaction Networks (SCRNs) are frequently used to gain a mechanistic understanding of how chemical reaction rate parameters impact the stochastic behavior of these systems. One property of interest is mean first passage times (MFPTs) between states. However, deriving explicit formulas for MFPTs can be highly complex. In order to address this problem, we first introduce the concept of$$coclique\, level\, structure$$and develop theorems to determine whether certain SCRNs have this feature by studying associated graphs. Additionally, we develop an algorithm to identify, under specific assumptions, all possible coclique level structures associated with a given SCRN. Finally, we demonstrate how the presence of such a structure in a SCRN allows us to derive closed form formulas for both upper and lower bounds for the MFPTs. Our methods can be applied to SCRNs taking values in a generic finite state space and can also be applied to models with non-mass-action kinetics. We illustrate our results with examples from the biological areas of epigenetics, neurobiology and ecology.more » « less
An official website of the United States government
